
1

BG/L System Overview

Susan Coghlan

MCS BG/L Specs
• Core Rack:

– 1024 dual-cpu 440 700Mhz 512MB RAM compute
nodes

– 32 I/O nodes (1/32 computes, basically the same
as compute nodes),

– Torus, Global Tree, Global Interrupt networks
• Frontends:

– JS20 blades – PPC970 2.1GHz dual-cpu 4GB
RAM

• Service Node:
– 4-way 1.7 Ghz PPC (2 CPU cores), 16GB RAM

• 20 Storage servers (4 homedir, 16 PVFS) ~14TB

2

Core Rack Layout
• 2 Midplanes per rack (top and bottom)
• 16 Node Boards per Midplane
• 16 Compute Cards per Node Board
• 2 Chips per Compute Card
• 2 Processors per Chip
• 1 I/O assigned to each set of 32

Compute Nodes

Layout of BGL
• Login servers – SuSE Linux OS (SLES9), regular

user logins, compiles and job submissions
• Service node – SuSE Linux OS (SLES8), no regular

user logins, job manager, partitioning of cluster, boots
I/O nodes

• I/O nodes - embedded Linux, no logins yet, function
is to forward I/O between compute nodes and storage
nodes

• Storage/home nodes – SuSE Linux OS (SLES9),
filesystems servers, no regular users logins, provides
filesystems for job access, home dirs on login servers

• Compute nodes – IBM microkernel, no shell, no
dynamic library loading, no local filesystems

3

MCS BG/L
Configuration

Accessing BGL
• Request BGL resource from MCS account pages

https://accounts.mcs.anl.gov
• Welcome mail with information on how to log on,

running a simple job, etc. will be sent to you
• SSH keys might already be set up for you, if not,

send your public key to support@bgl.mcs.anl.gov
• SSH into bgl.mcs.anl.gov from an ANL machine,

otherwise, ssh into MCS conduit machine (terra) –
forwarding your ssh keys through to BGL

4

Job Run Basics
• Overview:

– Partitions are allocated (or booted)
• Partition is set for a specific user
• I/O nodes associated with partition boot

with specified ramdisk and kernel
• I/O nodes NFS mount /bgl, home and

eventually PVFS directories
– User job(s) is (are) run
– Partition is freed

• Compute Node run modes:
– Co-Processor (default) - 1 proc computes, 1

handles communication
– Virtual – both procs are used for computing

Partitions explained
• Partitions consist of I/O node(s) and compute nodes
• 3 standard partitions: full (1024), midplane0 (512),

midplane1 (512)
• Special 32 node partitions: Pgeneral for any user's use,

dedicated P<username> for specific users. Ask if you
need a dedicated partition

• 2 modes of using partitions:
– Pre-allocated
– Allocated on the fly

• Allocating a partition takes around 3 minutes
• Multiple jobs (by the same user) can be run within a pre-

allocated partition

5

mpirun
• Example mpirun command:

mpirun -partition Psmc -np 32 -cwd `pwd` -exe `pwd`/hello.rts
• To run jobs on a specific partition use mpirun -partition

<partition> (always specify a partition)
• -np <#procs> can be <= partitionsize for C mode, <=

2*partitionsize for V mode (partition must be set to V mode
default to use V mode)

• mpirun always used to run jobs – whether they are mpi based or
not

• A job already running in a partition gives a reasonable error. It
causes no damage to try to run.

Scheduling Jobs
• No job scheduler at this time. Narayan Desai is

writing one. We hope to have a version available
next week.

• Reservations are needed for anything larger than a
32 node partition.

• Reservations are handled by notifying the users and
asking them not to run jobs during a specific time
period.

• We are working on tools to list jobs, kill jobs, etc.
• If you have a hung job that you can't kill, contact

support.

6

Help
• Documentation on the web site: http://www.bgl.mcs.anl.gov

• Mailing list archives – discuss, notify:
http://www.bgl.mcs.anl.gov/MailLists

• Email to discuss@bgl.mcs.anl.gov for user community support

• Email to support@bgl.mcs.anl.gov for system support

• Web problem tracking report (not yet available)
http://www.bgl.mcs.anl.gov/support

Parallel Issues on BG/L

Katherine M Riley

7

8

The Networks
• 3D Torus

– Point-to-Point, Point-to-Some
• Global Tree

– Global Operations, 8 microseconds latency
• Global Barriers and Interrupts

– Low latency barriers and interrupts (over a tree)
• G-bit Ethernet

– File I/O and Host interface
• Control Network

– Boot, Monitoring and Diagnostics

Torus

• Each node has 6 nearest neighbor
interconnects

• Raw hardware bandwidth:
– 2bits/cycle -> 175MB/s @ 700 MHz
– 6 microseconds

• Adaptive routing
• Maximum packet size of 256 bytes
• Turn it off :

– “mpirun -connect MESH”

9

Noise

• Very little on the system
– Tiny kernel doing very little

• Results in limited node functionality

• Necessary for coordinating
communication
– It really works

• Very reproducable results
• Can use almost the entire 512MB

Using the Second CPU

• Communication Coprocessor Mode
– “mpirun -mode CO”

• Virtual Node Mode
– “mpirun -mode VN”
– Two MPI processes per node (1 per proc)

• Communication through L3 cache

– Issues
• Share the 512 MB
• No communication offload

10

Massive Communication +
Comp

Controlling MPI

• Setting parameter like eager
– -env BGLMPI_EAGER=1000

• Control networks for individual
commands
– BGLMPI_ALLREDUCE=MPICH,TREE,

TORUS
• Available for all global operations

– BGLMPI_BARRIER

11

Message Passing for
Applications

• Communicators
– Tree interconnect utilized only for

MPI_Comm_world operations
– Torus interconnect supports multicast

operations on any axis
• Special topology-aware algorithm to fill plane

• Map MPI apps to machine topology

Create Physical Node
Partition

• User specified shape of partition when
submitting job
– mpirun -shape NxNxN

• Contiguous rectangular partition
• Nodes indexed (x,y,z) coordinates

inside job partition

12

Partition Mapping

• Can physically map processes to processors
– Create mapping file
– More info to follow

• Also - control how processes are filled
– BGLMPI_MAPPING=TXYZ

• In VN, fill both procs first, then nodes

– BGLMPI_MAPPING=XYZT
• Default - fill nodes then procs

Profiling
• Visualizers

– Efforts for jumpshot and paraver
• Simpler Characteristics

– FPMPI
– FPMPI-like from IBM

• Compiler provides access to routine wrapping
– "-finstrument-functions”
– __cyg_profile_func_enter(void * this_function, void * call_site)
– __cyg_profile_func_exit(void * this_function, void * call_site)

13

Debugging

• Gdb
– Work in progress, trying to get it
– Connect to hung processes

• Totalview
– Ported, but, unlikely to come here

Aspects of single processor
optimization on BG/L

Andrew Siegel

14

General CPU info
• Two processors per node

– No support for SIMD between processors
– Very unsafe dual-proc programming model

(co_start(…)) that is not recommended for apps
programmers

– Virtual node or co-processor mode recommended
• 32-bit architecture at 700MHz
• Single integer unit
• Single load/store unit
• Special double fpu (double hummer)

General, cont.
• L1 data cache: 32Kb, 32-Byte line size
• L2 data cache: Prefetch buffer: 16 128-byte lines
• L3 data cache: 4Mb, 35 cycle latency
• Memory: 512Mb DDR at 350MHz, ~85 cycles latency
• Double FPU: 32 primary (P) and 32 secondary (S) fp

registers -- major key to single CPU performance:
– Standard PowerPC instructions on fpu0 (fadd, fmadd,

fadds, fdiv)
– Typical SIMD instructions for 64-bit floating point (fpadd,

fpmadd, …) for P and S
– Also SIMOMD: cross, asymmetric, and complex operations
– Quad-word load/store (pair of 64-bit fp’s one to each group

of registers)

15

SIMOMD FMA Instructions

T=_fxcxpnpma(B,C,a
s)

PT = -SA*SC+PB

ST = SA*PC+SB
fxcxnpma fT,fA,fC,fBComplex

T=_fxcpnpma(B,C,ap
)PT = -PA*PC+PB

ST = PA*SC+SB
fxcpnpma fT,fA,fC,fBAsymmetric

T=_fxcpmadd(B,C,ap
)

PT = PA*PC+PB

ST = PA*SC+SB
fxcpmadd fT,fA,fC,fBReplicated

T=_fxmadd(B,C,A)
PT = PA*SC+PB

ST = SA*PC+SB
fxmadd fT,fA,fC,fBCross

T=_fpmadd(B,C,A)
PT = PA*PC+PB

ST = SA*SC+SB
fxmadd fT, fA,fC,fBParallel

C99 builtinsOperationExample
FMA instruction

class

Instruction throughput

1/3030fpdiv
15fpmadd
15fmadd
15fadd

Throughput/cycl
e

Latency
(cycles)

Instruction

Theoretical limit: 1fpmadd/cycle = 4 FLOPs/cylcle = 2.8GFLOPs

16

Random notes
• Warning: no hardware sqrt function

– GNU implementation ~100 cycles
– Others up to 5x faster
– Other math libs still not fully optimized

• Efficient use of double-hummer requires 16-byte
alignment for quad-word load/store instructions

• lfpd/stfpd can double the bandwidth to L1-cache

Data alignment
• Compiler will align data greater than 16 bytes to 16-byte

boundaries for stack locals and externally defined data. Special
16-byte-aligned malloc now also available.

• Parallel load/store is suppressed unless it can be determined
by examination of alignment information on memory references
that instruction will not trap

• Often, it is not possible for compiler to tell if a pointer point to
aligned data. (this is currently being improved)

• User can assert so using:
– _alignx(16, f); C
– call alignx(16, f(1)) Fortran

17

Data alignment sample code
Fortran :
 call alignx(16,x(1))
 call alignx(16,y(1))
!ibm* unroll(10)
 do i = 1, n
 y(i) = a*x(i) + y(i)
 end do
C :
double * x, * y;
#pragma disjoint (*x, *y)
__alignx(16,x);
__alignx(16,y);
#pragma unroll(10)
for (i=0; i<n; i++) y[i] = a*x[i] + y[i];
Try : -O3 -qarch=440d -qlist –qsource

Compiler Use
• Optimization levels:

– Default optimization = none (very slow)
– -O : good place to start, use with -qmaxmem=64000
– -O2: same as -O
– -O3 -qstrict : less aggressive, must strictly obey program semantics
– -O3: aggressive, allows re-association, will replace division by

multiplication with the inverse
– -qhot : turns on high-order transformation module, will add vector

routines, unless -qhot=novector
– check listing: -qreport=hotlist
– -qipa : inter-procedure analysis; many suboptions such as: -

qipa=level=2
• Architecture flags:

– -qarch=440 : generates standard powerpc floating-point code
– -qarch=440d : will try to generate double FPU code

18

Compiler, cont.
• Recommendation:

– On BG/L start with : -g -O -qarch=440 -qmaxmem=64000

– Try : -O3 -qarch=440/440d

– Try : -O5 -qarch=440d

– -O4 = -O3 -qhot -qipa=level=1 -qarch=auto

– -O5 = -O3 -qhot –qipa=level=2 -qarch=auto

• Warning: Generated .s files not valid! Must use –qreport
-qsource to get assembler listing and double hummer info!

• There are several compiler components. The backend code generator
has some vectorization capability, in fact it is very good in certain
cases.

• You would get that with -O3 -qarch=440d. The -qtune=440 option is
set by default in the compiler config file, so you don't need it unless
you use -O4 or -O5. The higher optimization levels are:

-O4 = -O3 -qhot -qipa -qarch=auto -qtune=auto
-O5 = -O3 -qhot -qipa=level=2 -qarch=auto -qtune=auto

The -qhot option invokes a different compiler module with more
vectorization capability.

• Lore to date: often get better results from -O3 -qarch=440d, but the -
qhot capability should improve over time, and it can do transformations
that the backend peice simply can't handle.

19

Profiling
• BG/L is similar to most risc systems, so profiling has been done to this point on

another platform.

• Standard profiling (prof, gprof) is not yet available on BG/L so use IBM Power4
systems for profiling.

• Major differences between BG/L and IBM Power4:
– BG/L has minimal L2 => BG/L benefits more from L1 cache re-use
– BG/L does not have a hardware square root
– Mathematical intrinsic routines (exp, log, …) on BG/L are from GNU libm.a =>

• Good approach: profile on IBM Power4 / AIX using xprofiler

• Use MPI profiling tools – there are many to choose from.
– mpi_trace : low overhead, text summary for free (see demo later)
– paraver : extensive data analysis capabilities
– mpe / jumpshot : standard with MPICH

Math Routines
• Scalar and Vector

MASS Routines
• Approximate cycle-

counts per evaluation
on BG/L

libmassvlibmasslibmop

4-5…301/x
6-7…136rsprt

8-1046106sqrt

29-48176460pow

2580320log
2264185exp

20

Floating Point Counters:

• 2 counters per core
• Can count 1 set of load/store and 1 set of

arithmetic ops concurrently.
• Load / Store Sets:

– One of {Double LD, Double ST, Quad LD, Quad ST}
• Arith Op Sets:

– One of {Adds, Mults, FMA, All Quad Arithmetic Ops}
• Need multiple runs to get all possible sets.

Bgl_perfctr

• API abstraction of the hardware performance
counter

• 64bit virtualization of 32b counters
• Overflow protection using timer interrupts
• Mnemonic names for all events
• Unified view of all events without limitations

of functionality
• Transparent event to counter mapping

21

PAPI

• De Facto standard API for user level tools
and application developers

• BG/L implements PAPI v. 2.3.4
• Full support for create, remove, start, stop,

reset event sets
• All BG/L counters are supported in PAPI

using the native event format
(bgl_event_mnemonic & 0x3FF) | (bgl_edge)<<10

New PAPI events
• PAPI_BGL_OED

Oedipus instructions in FPU unit
• PAPI_BGL_TS_32B

Total number of 32B chunks sent in any torus direction
• PAPI_BGL_TR_DPKT

Total number of tree data packets sent on any channel
• PAPI_BGL_TS_FULL, PAPI_BGL_TR_FULL

Cycle counts indicative of pile-up

22

Optional PAPI functionality

• PAPI can support some functions that is
available on some computing platforms.

• On platforms where the functionality is not
available these API calls return an error code

• On BG/L this includes the following
– PAPI_overflow(): To call a user handler on

counter reaching a threshold value
– PAPI_multiplex(): Automatic, periodic switching

between event sets. Use different counter set
up on different nodes instead.

